Irina Pettersson

Irina Pettersson

PhD in mathematics and in applied mathematics

Associate professor at the Department for electronics, mathematics and natural sciences in the Akademin för teknik och miljö

Email: irina.pettersson@hig.se

Phone: +4626-648965


Research interests: partial differential equations, asymptotic analysis, homogenization, modeling of biological cells, sound damping.

Current research

  • Modeling of biological tissues under electrical stimulation.
  • Sound damping in porous media.

Recent publications:

  1. G. Allaire, I. Pankratova, A.Piatnitski, Homogenization and concentration for a diffusion equation with large convection in a bounded domain, Journal of Functional Analysis 262 (2012) 300-330.
  2. G. Allaire, I. Pankratova, A.Piatnitski, Homogenization of a nonstationary convection- diffusion equation in a thin rod and in a layer, SeMA Journal, 58, pp.53-95 (2012).
  3. V. Chiado-Piat, I.Pankratova, A.Piatnitski, Localization effect for a spectral problem in a perforated domain with Fourier boundary conditions, SIAM J. Math. Anal., 45(3),1302-1327 (2013).
  4. I. Pankratova and K. Pettersson. "Spectral asymptotics for an elliptic operator in a locally periodic perforated domain." Applicable Analysis 94.6 (2015): 1207--1234.
  5. A. Chechkina, I. Pankratova, and K. Pettersson. "Spectral asymptotics for a singularly perturbed fourth order locally periodic elliptic operator." Asymptotic Analysis 93.1-2 (2015): 141-160.
  6. I. Pettersson. "Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary". Differential Equations & Applications, 9(3), 393--412 (2017).
  7. I. Petersson, A. Piatnitski. "Stationary convection-diffusion equation in an infinite cylinder". J. Differential Equations 264 (2018) 4456-4487.
  8. C. Jerez Hanckes, I. Pettersson, V. Rybalko. "Derivation of cable equation by multiscale analysis for a model of myelinated axons", eprint arXiv:1805.01708.
Pettersson, I. & Piatnitski, A. (2018). Stationary convection-diffusion equation in an infinite cylinder. Journal of Differential Equations, 264 (7), 4456-4487. 10.1016/j.jde.2017.12.015 [More information]
Pettersson, I. (2017). Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary. Differential Equations & Applications, 9 (3), 393-412. 10.7153/dea-2017-09-28 [More information]
Chechkina, A., Pankratova, I. & Pettersson, K. (2015). Spectral asymptotics for a singularly perturbed fourth order locally periodic elliptic operator. Asymptotic Analysis, 93 (1-2), 141-160. 10.3233/ASY-151291 [More information]
Pankratova, I. & Pettersson, K. (2015). Spectral asymptotics for an elliptic operator in a locally periodic perforated domain. Applicable Analysis, 94 (6), 1207-1234. 10.1080/00036811.2014.924110 [More information]
Chiadò Piat, V., Pankratova, I. & Piatnitski, A. (2013). Localization effect for a spectral problem in a perforated domain with Fourier boundary conditions. SIAM Journal on Mathematical Analysis, 45 (3), 1302-1327. 10.1137/120868724 [More information]
Published by: Irina Pettersson Page responsible: Gunilla Mårtensson Updated: 2018-06-25
Högskolan i Gävle
www.hig.se
Box 801 76 GÄVLE
026-64 85 00 (växel)