Publikationer

  1. E. Khruslov, I. Pankratova, Homogenization of Maxwell's equations, Proceedings of 2006 International Conference on Mathematical Methods in Electromagnetic Theory, IEEE Conference Proceedings, p.239--241, 2006.
  2. I. Pankratova, A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder, DCDS-B, 11 (4), 935--970 (2009).
  3. G.Panasenko, I.Pankratova, A.Piatnitski, Homogenization of convection-diffusion equation in thin rod structure, Integral Methods in Science and Engineering, Volume 1, Birkhäuser Boston, p.279--290 (2010).
  4. S.Nazarov, I.Pankratova, A.Piatnitski, Homogenization of spectral problem for periodic elliptic operators with sign-changing weight function, Arch. Rational Mech. Anal. 200 (2011) 747--788.
  5. I.Pankratova, A.Piatnitski, Homogenization of convection-diffusion equation in infinite cylinder, Networks and Heterogeneous Media 6 (1), 111--126 (2011).
  6. I.Pankratova, A.Piatnitski, Spectral problem for a locally periodic elliptic operator with sign-changing weight function, J. Differential Equations 250 (2011) 3088--3134.
  7. G. Allaire, I. Pankratova, A.Piatnitski, Homogenization and concentration for a diffusion equation with large convection in a bounded domain, Journal of Functional Analysis 262 (2012) 300--330.
  8. G. Allaire, I. Pankratova, A.Piatnitski, Homogenization of a nonstationary convection- diffusion equation in a thin rod and in a layer, SeMA Journal, 58, pp.53-95 (2012).
  9. V. Chiado-Piat, I.Pankratova, A.Piatnitski, Localization effect for a spectral problem in a perforated domain with Fourier boundary conditions, SIAM J. Math. Anal., 45(3),1302--1327 (2013).
  10. I. Pankratova and K. Pettersson. "Spectral asymptotics for an elliptic operator in a locally periodic perforated domain." Applicable Analysis 94.6 (2015): 1207--1234.
  11. A. Chechkina, I. Pankratova, and K. Pettersson. "Spectral asymptotics for a singularly perturbed fourth order locally periodic elliptic operator." Asymptotic Analysis 93.1-2 (2015): 141--160.
  12. I. Pettersson. "Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary". Differential Equations \& Applications, 9(3), 393--412 (2017).
  13. I. Petersson, A. Piatnitski. "Stationary convection-diffusion equation in an infinite cylinder". J. Differential Equations 264 (2018) 4456--4487.

Artiklar | Kapitel i böcker


Artiklar


Vetenskapliga artiklar, refereegranskade

Pankratova, I. & Piatnitski, A. (2009). On the behaviour at infinity of solutions to stationary convection-diffusion equations in a cylinder. Discrete and continuous dynamical systems. Series B, 11 (4), 935-970. 10.3934/dcdsb.2009.11.935 [Mer information]

Kapitel i böcker

Panasenko, G., Pankratova, I. & Piatnitski, A. (2010). Homogenization of a convection-diffusion equation in a thin rod structure. Integral methods in science and engineering : Vol. 1. Boston: Birkhäuser Verlag. S. 279-290. 10.1007/978-0-8176-4899-2_26 [Mer information]

Text

Publicerad av: Irina Pettersson Sidansvarig: Gunilla Mårtensson Sidan uppdaterades: 2018-06-13
Högskolan i Gävle
www.hig.se
Box 801 76 GÄVLE
026-64 85 00 (växel)