Forskarpresentation

Mohammad Bagherbandi

Forskarpresentation

Mohammad Bagherbandi

Professor

Forskningsämne: Lantmäteriteknik
Forskningsområde: Geospatial informationsvetenskap

Jag är professor i Geomatik (speciellt tillämpad geodesi). Min bakgrund är inom tekniskt lantmäteri och forskningsområdet är noggrann positionering (Global Navigation Satellite System, GNSS), 3D modellering och kartläggning av olika föremål och fenomen med hjälp av geodetisk terrester, flygburen, drönare och satellitdata (fjärranalys).

Jag är aktiv inom geodesi genom att studera jordskorpan, jordens tyngdkraft och tyngdkraftsförändring, klimatförändring, miljöövervakning (t.ex. ismälting och dess påverkan i havsnivå, landhöjning eftersom av den postglaciala fenomen och mark sättningar eftersom globalvärming och dess inverkan på grundvattenförändringar) och infrastrukturövervakning t.ex. små rörelsedetektering (i mm nivån) hos en dam, byggnader, broar, och tunnel.

AKTUELL FORSKNING

  • “Stomnät i luften (Project Adapted Network-RTK for road construction projects)” supported by Swedish Transport Administration (Trafikverket) (2019-2022).
  • Satellite monitoring of railways using InSAR (Trafikverket) (2020-2021).
  • Spatial Data Innovation a research project supported by The Swedish Agency for Economic and Regional Growth (Tillväxtverket) (2018-2021).
  • Improvement in 3D mapping and accuracy assessment using aerial photogrammetry data supported by Lars E. Lunbderg’s foundation (2018-2020).
  • Cost-effective data capturing using satellite images for subsidence monitoring in urban regions supported by SWECO and J. Gust. Richert foundation (2019-2020).

LÄS MER OM


Artiklar


Vetenskapliga artiklar, refereegranskade

Jouybari, A., Bagherbandi, M. & Nilfouroushan, F. (2021). Comparison of the strip- and block-wise aerial triangulation using different exterior orientation parameters weights. Journal of Spatial Science. 10.1080/14498596.2020.1871086 [Mer information]
Agha Karimi, A., Bagherbandi, M. & Huremuz, M. (2021). Multidecadal sea level variability in the Baltic sea and its impact on acceleration estimations. Frontiers in Marine Science, 8. 10.3389/fmars.2021.702512 [Mer information]
Shirazian, M., Bagherbandi, M. & Karimi, H. (2021). Network-Aided Reduction of Slope Distances in Small-Scale Geodetic Control Networks. Journal of Surveying Engineering, 147 (4). 10.1061/(ASCE)SU.1943-5428.0000375 [Mer information]
Maciuk, K., Kudrys, J., Bagherbandi, M. & Bezmenov, I. (2020). A new method for quantitative and qualitative representation of the noises type in Allan (and related) variances. Earth Planets and Space, 72 (1). 10.1186/s40623-020-01328-6 [Mer information]
Gido, N., Bagherbandi, M. & Nilfouroushan, F. (2020). Localized subsidence zones in Gävle city detected by Sentinel-1 PSI and leveling data. Remote Sensing, 12 (16). 10.3390/rs12162629 [Mer information]
Amin, H., Bagherbandi, M. & Sjöberg, L. (2020). Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016. Advances in Space Research, 65 (8), 1922-1940. 10.1016/j.asr.2020.01.029 [Mer information]
Shirazian, M., Jazireeyan, I. & Bagherbandi, M. (2020). Reality measure of the published GPS satellite ephemeris uncertainties. Journal of Spatial Science. 10.1080/14498596.2020.1746702 [Mer information]
Gido, N., Amin, H., Bagherbandi, M. & Nilfouroushan, F. (2020). Satellite Monitoring of Mass Changes and Ground Subsidence in Sudan’s Oil Fields Using GRACE and Sentinel-1 Data. Remote Sensing, 12 (11). 10.3390/rs12111792 [Mer information]
Sjöberg, L. & Bagherbandi, M. (2020). Upper mantle density and surface gravity change in Fennoscandia, determined from GRACE monthly data. Tectonophysics, 782-783. 10.1016/j.tecto.2020.228428 [Mer information]
Amin, H., Sjöberg, L. & Bagherbandi, M. (2019). A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. Journal of Geodesy, 93 (10), 1943-1961. 10.1007/s00190-019-01293-3 [Mer information]
Gido, N., Bagherbandi, M. & Sjöberg, L. (2019). A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia. Geosciences Journal, 23 (3), 377-389. 10.1007/s12303-018-0046-8 [Mer information]
Gido, N., Bagherbandi, M., Sjöberg, L. & Tenzer, R. (2019). Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions. Acta Geophysica, 67 (2), 721-734. 10.1007/s11600-019-00276-4 [Mer information]
Baranov, A., Tenzer, R. & Bagherbandi, M. (2018). Combined Gravimetric–Seismic Crustal Model for Antarctica. Surveys in geophysics, 39 (1), 23-56. 10.1007/s10712-017-9423-5 [Mer information]
Baranov, A., Bagherbandi, M. & Tenzer, R. (2018). Combined Gravimetric-Seismic Moho Model of Tibet. Geosciences, 8 (12). 10.3390/geosciences8120461 [Mer information]
Tenzer, R., Foroughi, I., Sjöberg, L., Bagherbandi, M., Hirt, C. & Pitoňák, M. (2018). Definition of Physical Height Systems for Telluric Planets and Moons. Surveys in geophysics, 39 (3), 313-335. 10.1007/s10712-017-9457-8 [Mer information]
Tenzer, R., Chen, W., Baranov, A. & Bagherbandi, M. (2018). Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data. Pure and Applied Geophysics, 175 (6), 2181-2203. 10.1007/s00024-018-1795-z [Mer information]
Bagherbandi, M., Bai, Y., Sjöberg, L., Tenzer, R., Abrehdary, M., Miranda, S. & Sanchez, J. (2017). Effect of the lithospheric thermal state on the Moho interface : a case study in South America. Journal of South American Earth Sciences, 76, 198-207. 10.1016/j.jsames.2017.02.010 [Mer information]
Tenzer, R., Bagherbandi, M., Chen, W. & Sjöberg, L. (2017). Global Isostatic Gravity Maps From Satellite Missions and Their Applications in the Lithospheric Structure Studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (2), 549-561. 10.1109/JSTARS.2016.2556219 [Mer information]
Abrehdary, M., Lars, S., Bagherbandi, M. & Sampietro, D. (2017). Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Applied Geodesy, 11 (4), 231-247. 10.1515/jag-2017-0019 [Mer information]
Joud S., M., Sjöberg, L. & Bagherbandi, M. (2017). Use of GRACE Data to Detect the Present Land Uplift Rate in Fennoscandia. Geophysical Journal International, 209 (2), 909-922. 10.1093/gji/ggx063 [Mer information]
Bagherbandi, M. (2016). Deformation monitoring using different least squares adjustment methods : a simulated study. KSCE Journal of Civil Engineering, 20 (2), 855-862. 10.1007/s12205-015-0454-5 [Mer information]
Abrehdary, M., Sjöberg, L. & Bagherbandi, M. (2016). Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz-Moritz' method. Acta Geodaetica et Geophysica, 51 (2), 137-149. 10.1007/s40328-015-0116-6 [Mer information]
Abrehdary, M., Sjöberg, L. & Bagherbandi, M. (2016). The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination. International Journal of Geophysics, 204 (1), 262-273. 10.1093/gji/ggv450 [Mer information]
Tenzer, R. & Bagherbandi, M. (2016). Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries. Journal of Earth Science, 27 (6), 1045-1053. 10.1007/s12583-015-0608-x [Mer information]
Bagherbandi, M., Sjöberg, L., Tenzer, R. & Abrehdary, M. (2015). A new Fennoscandian crustal thickness model based on CRUST1.0 and a gravimetric-isostatic approach. Earth-Science Reviews, 145, 132-145. 10.1016/j.earscirev.2015.03.003 [Mer information]
Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L., Novák, P. & Jin, S. (2015). Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field. Surveys in geophysics, 36 (1), 139-165. 10.1007/s10712-014-9299-6 [Mer information]
Abrehdary, M., Sjöberg, L. & Bagherbandi, M. (2015). Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 26 (4), 607-616. 10.1007/s12583-015-0571-6 [Mer information]
Tenzer, R., Bagherbandi, M. & Sjöberg, L. (2015). Comparison of various isostatic marine gravity disturbances. Journal of Earth System Science, 124 (6), 1235-1245. 10.1007/s12040-015-0610-9 [Mer information]
Tenzer, R., Bagherbandi, M., Sjöberg, L. & Novak, P. (2015). Isostatic crustal thickness under the Tibetan Plateau and Himalayas from satellite gravity gradiometry data. Earth Sciences Research Journal, 19 (2). 10.15446/esrj.v19n2.44574 [Mer information]
Sjöberg, L., Bagherbandi, M. & Tenzer, R. (2015). On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies. Pure and Applied Geophysics, 172 (10), 2669-2680. 10.1007/s00024-015-1032-y [Mer information]
Bagherbandi, M., Tenzer, R., Sjöberg, L. & Abrehdary, M. (2015). On the residual isostatic topography effect in the gravimetric Moho determination. Journal of Geodynamics, 83, 28-36. 10.1016/j.jog.2014.11.002 [Mer information]
Bagherbandi, M., Tenzer, R. & Sjöberg, L. (2014). Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy. Studia Geophysica et Geodaetica, 58 (2), 227-248. 10.1007/s11200-013-1258-z [Mer information]
Sjöberg, L., Abrehdary, M. & Bagherbandi, M. (2014). The observed geoid height versus Airy's and Pratt's isostatic models using matched asymptotic expansions. Acta Geodaetica et Geophysica Hungarica, 49 (4), 473-490. 10.1007/s40328-014-0064-6 [Mer information]
Sjöberg, L. & Bagherbandi, M. (2013). A study on the Fennoscandian post-glacial rebound as observed by present-day uplift rates and gravity field model GOCO02S. Acta Geodaetica et Geophysica Hungarica, 48 (3), 317-331. 10.1007/s40328-013-0025-5 [Mer information]
Bagherbandi, M. & Tenzer, R. (2013). Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia. Journal of Earth System Science, 122 (2), 339-348. 10.1007/s12040-013-0279-x [Mer information]
Novák, P., Tenzer, R., Eshagh, M. & Bagherbandi, M. (2013). Evaluation of gravitational gradients generated by Earth's crustal structures. Computers & Geosciences, 51, 22-33. 10.1016/j.cageo.2012.08.006 [Mer information]
Bagherbandi, M. & Tenzer, R. (2013). Geoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S : A Case Study of Himalayas and Tibet. Terrestrial, Atmospheric and Oceanic Science, 24 (1), 59-68. 10.3319/TAO.2012.09.17.02(TT) [Mer information]
Tenzer, R., Bagherbandi, M. & Vajda, P. (2013). Global model of the upper mantle lateral density structure based on combining seismic and isostatic models. Geosciences Journal, 17 (1), 65-73. 10.1007/s12303-013-0009-z [Mer information]
Bagherbandi, M., Tenzer, R., Sjöberg, L. & Novak, P. (2013). Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. Journal of Geodynamics, 66, 25-37. 10.1016/j.jog.2013.01.002 [Mer information]
Bagherbandi, M. & Sjöberg, L. (2013). Improving gravimetric–isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0. Earth-Science Reviews, 117, 29-39. 10.1016/j.earscirev.2012.12.002 [Mer information]
Tenzer, R., Bagherbandi, M., Cheinway, H. & Chang, E. (2013). Moho Interface Modeling Beneath the Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.0. Terrestrial, Atmospheric and Oceanic Science, 24 (4), 581-590. 10.3319/TAO.2012.11.01.02(TibXS) [Mer information]
Tenzer, R. & Bagherbandi, M. (2013). Reference crust-mantle density contrast beneath Antarctica based  on the Vening Meinesz-Moritz isostatic inverse problem and CRUST2.0 seismic model. Earth Science Research, 17 (1), 7-12. [Mer information]
Bagherbandi, M. & Sjöberg, L. (2012). A synthetic Earth gravity model based on a topographic-isostatic model. Studia Geophysica et Geodaetica, 56 (4), 935-955. 10.1007/s11200-011-9045-1 [Mer information]
Bagherbandi, M. (2012). Combination of seismic and an isostatic crustal thickness models using Butterworth filter in a spectral approach. Journal of Asian Earth Sciences, 59, 240-248. 10.1016/j.jseaes.2012.08.008 [Mer information]
Bagherbandi, M. & Eshagh, M. (2012). Crustal thickness recovery using an isostatic model and GOCE data. Earth Planets and Space, 64 (11), 1053-1057. 10.5047/eps.2012.04.009 [Mer information]
Tenzer, R., Bagherbandi, M. & Vajda, P. (2012). Depth-dependent density change within the continental upper mantle. Slovak Academy of Sciences. Geophysical Institute. Contributions to Geophysics and Geodesy, 42 (1), 1-13. 10.2478/v10126-012-0001-z [Mer information]
Bagherbandi, M. (2012). Global earth isostatic model using smoothed Airy-Heiskanen and Vening Meinesz hypotheses. Earth Science Informatics, 5 (2), 93-104. 10.1007/s12145-012-0099-6 [Mer information]
Bagherbandi, M. (2012). Impact of compensating mass on the topographic mass : A study using isostatic and non-isostatic Earth crustal models. Acta Geodaetica et Geophysica Hungarica, 47 (1), 29-51. 10.1556/AGeod.47.2012.1.3 [Mer information]
Bagherbandi, M. & Sjöberg, L. (2012). Modelling the density contrast and depth of the Moho discontinuity by seismic and gravimetric–isostatic methods with an application to Africa. Journal of African Earth Sciences, 68, 111-120. 10.1016/j.jafrearsci.2012.04.003 [Mer information]
Bagherbandi, M. & Sjöberg, L. (2012). Non-isostatic effects on crustal thickness : A study using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200, 37-44. 10.1016/j.pepi.2012.04.001 [Mer information]
Eshagh, M. & Bagherbandi, M. (2012). Quality description for gravimetric and seismic moho models of Fennoscandia through a combined adjustment. Acta Geodaetica et Geophysica Hungarica, 47 (4), 388-401. 10.1556/AGeod.47.2012.4.2 [Mer information]
Bagherbandi, M. & Eshagh, M. (2012). Recovery of Moho’s undulations based on the Vening Meinesz–Moritz theory from satellite gravity gradiometry data : A simulation study. Advances in Space Research, 49 (6), 1097-1111. 10.1016/j.asr.2011.12.033 [Mer information]
Tenzer, R. & Bagherbandi, M. (2012). Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances. International Journal of Geosciences, 3 (5A), 918-929. 10.4236/ijg.2012.325094 [Mer information]
Tenzer, R., Bagherbandi, M. & Gladkikh, V. (2012). Signature of the upper mantle density structure in the refined gravity data. Computational Geosciences, 16 (4), 975-986. 10.1007/s10596-012-9298-y [Mer information]

Övriga artiklar (populärvetenskap, debatt etc.)

Bagherbandi, M. & Eshagh, M. (2014). Combined Moho Estimators. Geodynamics : Research International Bulletin, 1 (3), 1-11. Länk [Mer information]

Böcker

Sjöberg, L. & Bagherbandi, M. (2017). Gravity Inversion and Integration : Theory and Applications in Geodesy and Geophysics. Cham: Springer Publishing Company. xiv, 383 s. 10.1007/978-3-319-50298-4 [Mer information]

Kapitel i böcker

Sjöberg, L. & Bagherbandi, M. (2016). Isostasy - Geodesy. Encyclopedia of Geodesy. Springer. 10.1007/978-3-319-02370-0_111-1 [Mer information]

Konferensbidrag

Leiseder, K., Shoushtari, H., Willemsen, T., Bagherbandi, M. & Sternberg, S. (2021). UBI-T: Smart Surveying Instrument Using Ubiquitous Computing Concept. . Länk [Mer information]
Amin, H., Sjöberg, L. & Bagherbandi, M. (2020). A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. . Länk [Mer information]
Jouybari, A., Bagherbandi, M. & Nilfouroushan, F. (2020). Assessment of Different GNSS and IMU Observation Weights on Photogrammetry Aerial Triangulation. . Amsterdam: FIG. Länk [Mer information]
Bagherbandi, M. & Gido, N. (2020). How isostasy explains continental rifting in East Africa?. . Länk [Mer information]
Gido, N., Amin, H., Bagherbandi, M. & Nilfouroushan, F. (2020). Satellite monitoring of mass changes and ground subsidence in Sudan’s oil fields using GRACE and Sentinel-1 data. . Länk [Mer information]
Amin, H., Bagherbandi, M. & Sjöberg, L. (2019). Evaluation of the Closure of Global Mean Sea Level Rise Budget over January 2005 to August 2016. . Länk [Mer information]
Bagherbandi, M., Gido, N., Sjöberg, L. & Tenzer, R. (2019). Studying permafrost using GRACE and in situ data in the northern high-latitudes regions. . [Mer information]
Shafiei, M., Bagherbandi, M. & Sjöberg, L. (2018). A satellite-based gravimetric approach to GIA modelling. . [Mer information]
Tenzer, R., Foroughi, I., Sjöberg, L., Bagherbandi, M., Hirt, C. & Pitoňák, M. (2018). Theoretical and practical aspects of defining the heights for planets and moons. . [Mer information]
Bagherbandi, M., Sjöberg, L. & Amin, H. (2018). Towards a world vertical datum defined by the geoid potential and Earth’s ellipsoidal parameters. . [Mer information]
Nilfouroushan, F., Bagherbandi, M. & Gido, N. (2017). Ground Subsidence And Groundwater Depletion In Iran: Integrated approach Using InSAR and Satellite Gravimetry. . [Mer information]
Bagherbandi, M. & Tenzer, R. (2016). Comparative study of the uniform and variable Moho density contrast in the Vening Meinesz-Moritz’s isostatic scheme for the gravimetric Moho recovery. International Association of Geodesy Symposia : 3rd International Gravity Field Service, IGFS 2014; Shanghai; China; 30 June 2014 through 6 July 2014: Springer Berlin/Heidelberg. S. 199-207. 10.1007/1345_2015_210 [Mer information]
Tenzer, R. & Bagherbandi, M. (2014). Comparative Study of the Uniform and Variable Moho Density Contrast in the Vening Meinesz-Moritz’s Isostatic Scheme for the Gravimetric Moho Recovery. IGFS 2014, Proceedings of the 3rd International Gravity Field Service (IGFS), Shanghai, China, 30 June - 6 July 2014: Springer. S. 199-207. 10.1007/978-3-319-39820-4 [Mer information]
Publicerad av: Camilla Haglund Sidansvarig: Gunilla Mårtensson Sidan uppdaterades: 2021-10-22
Högskolan i Gävle
www.hig.se
Box 801 76 GÄVLE
026-64 85 00 (växel)